skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nasir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Face recognition systems have made significant strides thanks to data-heavy deep learning models, but these models rely on large privacy-sensitive datasets. Recent work in facial analysis and recognition have thus started making use of synthetic datasets generated from GANs and diffusion based generative models. These models, however, lack fairness in terms of demographic representation and can introduce the same biases in the trained downstream tasks. This can have serious societal and security implications. To address this issue, we propose a methodology that generates unbiased data from a biased generative model using an evolutionary algorithm. We show results for StyleGAN2 model trained on the Flicker Faces High Quality dataset to generate data for singular and combinations of demographic attributes such as Black and Woman. We generate a large racially balanced dataset of 13.5 million images, and show that it boosts the performance of facial recognition and analysis systems whilst reducing their biases. We have made our code-base ( https://github.com/anubhav1997/youneednodataset ) public to allow researchers to reproduce our work. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2025
  4. We are the first to introduce the energy function into game theory literature and prove that the zero point of the energy function is a Nash equilibrium. 18 examples are tested using the algorithm. 
    more » « less
  5. A dictionary attack in a biometric system entails the use of a small number of strategically generated images or tem- plates to successfully match with a large number of identi- ties, thereby compromising security. We focus on dictionary attacks at the template level, specifically the IrisCodes used in iris recognition systems. We present an hitherto unknown vulnerability wherein we mix IrisCodes using simple bit- wise operators to generate alpha-mixtures —alpha-wolves (combining a set of “wolf” samples) and alpha-mammals (combining a set of users selected via search optimization) that increase false matches. We evaluate this vulnerabil- ity using the IITD, CASIA-IrisV4-Thousand and Synthetic datasets, and observe that an alpha-wolf (from two wolves) can match upto 71 identities @FMR=0.001%, while an alpha-mammal (from two identities) can match upto 133 other identities @FMR=0.01% on the IITD dataset. 
    more » « less